⇡

∎ Where Good Ideas Come From- The Natural History of Innovation - Johnson - 2011 - Reading Session 202408121021

Last updated Aug 12, 2024 | Originally published Aug 12, 2024

Annotations of đ– « Where Good Ideas Come From- The Natural History of Innovation - Johnson - 2011 from 20240812 at 10:21

Page 17

both the city and the Web possess an undeniable track record at generating innovation.2 In the same way, the “myriad tiny architects” of Darwin’s coral reef create an environment where biological innovation can flourish. If we want to understand where good ideas come from, we have to put them in context. Darwin’s world-changing idea unfolded inside his brain, but think of all the environments and tools he needed to piece it together: a ship, an archipelago, a notebook, a library, a coral reef. Our thought shapes the spaces we inhabit, and our spaces return the favor. The argu ment of this book is that a series of shared properties and patterns recur again and again in unusually fertile environments. I have distilled them down into seven patterns, each one occupying a sep arate chapter. The more we embrace these patterns—in our private work habits and hobbies, in our office environments, in the design of new software tools—the better we will be at tapping our extraor dinary capacity for innovative thinking.

Does the city and the reef follow TAP? If so, does the same pattern apply to e.g. conduits collected by Darwin? What does TAP and Johnson’s book agree upon?

Page 18

. In the lan guage of complexity theory, these patterns of innovation and cre ativity are fractal: they reappear in recognizable form as you zoom in and out, from molecule to neuron to pixel to sidewalk. Whether you’re looking at the original innovations of carbon-based life, or the explosion of new software tools on the Web, the same shapes keep turning up. When life gets creative, it has a tendency to grav itate toward certain recurring patterns, whether those patterns are emergent and self-organizing, or whether they are deliberately crafted by human agents.

Constructal flow must apply here as well.

Page 20

When we look at the history of innova tion from the vantage point of the long zoom, what we find is that unusually generative environments display similar patterns of cre ativity at multiple scales simultaneously.

So is there a “long zoom” view of data design?

Page 102

A recent experiment led by the German neuroscientist Ullrich Wagner demonstrates the potential for dream states to trigger new conceptual insights. In Wagner’s experiment, test subjects were as signed a tedious mathematical task that involved the repetitive trans formation of eight digits into a different number. With practice, the test subjects grew steadily more efficient at completing the task. But Wagner’s puzzle had a hidden pattern to it, a rule that governed the numerical transformations. Once discovered, the pattern allowed the subjects to complete the test much faster, not unlike the surge of ac tivity one gets at the end of a jigsaw puzzle when all the pieces sud denly fall into place. Wagner found that after an initial exposure to the numerical test, “sleeping on the problem” more than doubled the test subjects’ ability to discover the hidden rule. The mental recom binations of sleep helped them explore the full range of solutions to the puzzle, detecting patterns that they had failed to perceive in their initial training period.

Page 105

Thatcher and other researchers believe that the electric noise of the chaos mode allows the brain to experiment with new links between neurons that would otherwise fail to con nect in more orderly settings. The phase-lock mode (the theory goes) is where the brain executes an established plan or habit. The chaos mode is where the brain assimilates new information, ex plores strategies for responding to a changed situation. In this sense, the chaos mode is a kind of background dreaming: a wash of noise that makes new connections possible. Even in our waking hours, it turns out, our brains gravitate toward the noise and chaos of dreams, 55 milliseconds at a time.

Is the notion of phase locking aligned with the two systems of thinking fast and slow?

Page 110

The shower or stroll removes you from the task-based focus of modern life—paying bills, answering e-mail, helping kids with homework—and deposits you in a more associative state.

One strategy for encouraging serendipitous ideas is to switch thinking modes. Again, constructal flow’s diffusion and infusion.

Page 112

While the creative walk can produce new serendipitous com binations of existing ideas in our heads, we can also cultivate ser endipity in the way that we absorb new ideas from the outside world. Reading remains an unsurpassed vehicle for the transmis sion of interesting new ideas and perspectives. But those of us who aren’t scholars or involved in the publishing business are only able to block out time to read around the edges of our work schedule: listening to an audio book during the morning commute, or taking in a chapter after the kids are down. The problem with assimilating new ideas at the fringes of your daily routine is that the potential combinations are limited by the reach of your memory. If it takes you two weeks to finish a book, by the time you get to the next book, you’ve forgotten much of what was so interesting or provocative about the original one. You can immerse yourself in a single au thor’s perspective, but then it’s harder to create serendipitous colli sions between the ideas of multiple authors.

Here Johnson characterizes one of the key constraints on knowledge management and innovation in knowledge work.

Page 118

So far in the chapter, Johnson has discussed the necessity for disorder in the process of coming up with new, unexpected ideas that connect several seemingly unrelated concepts into a solution for a problem. He discusses a couple of the contributing factors for this process: (1) toggling between focused and unfocused states (e.g., by taking a break from a problem you’ve been working on), (2) collecting many ideas and keeping them available to one another (e.g., by storing them in PKM systems or by engaging in intense periods of conceptual diversity, such as a reading vacation [conferences are arguably a source of this]). At this point in the chapter he is shifting to questioning the role of the Internet in these factors of serendipity, reflecting on how the Web affects analog patterns of accidental discovery.