|||

Over the past five years, we have heard many stories from data science teams about their successes and challenges when building, deploying, and monitoring models

Over the past five years, we have heard many stories from data science teams about their successes and challenges when building, deploying, and monitoring models. Unfortunately, we have also heard that many companies have internalized the model myth, or the misconception that data science should be treated like software development or data assets. This misconception is completely understandable. Data science involves code and data. Yet, people leverage data science to discover answers to previously unsolvable questions. As a result, data science work is more experimental, iterative, and exploratory than software development. Data science work involves computationally intensive algorithms that benefit from scalable compute and sometimes requires specialized hardware like GPUs. Data science work also requires data, a lot more data than typical software products require. All of these needs (and more) highlight how data science work differs from software development. These needs also highlight the vital importance of collaboration between data science and engineering, particularly for innovative model-driven companies seeking to maintain or grow their competitive advantage. — https://blog.dominodatalab.com/collaboration-data-science-data-engineering-true-false/
    Next → → Over the past five years, we have heard many stories from data science teams about their successes and challenges when building, deploying, and monitoring models https://blog.dominodatalab.com/collaboration-data-science-data-engineering-true-false/ ← Previous → The disparity in ways that file selection is presented or obstructed in apps is bewildering and frustrating. ”The only way apps should be doing it currently is with iOS 11 style file APIs, but many apps have either legacy file solutions, bespoke (ie,
    Latest posts
    The Verge → Researchers detail huge hack-for-hire campaigns against environmentalists
    Conversations, cybernetics, and Theory of Mind
    → Why are we exceeding the Earth’s carrying capacity?
    IDEO U's Creative Confidence Podcast → Roger Martin, Bianca Andreescu, and systemic strategy
    Reuters → Systemic lessons from South Korea’s Patient 31
    Axle → Divide & conquer
    FSG → Can Snow Clearing Be Sexist?
    The Verge → As Lambda students speak out, the school’s debt-swapping partnership disappears from the internet
    The Talk Show → “Bring It On, Haters”, With Special Guest Ben Thompson
    Facebook → Starting the Decade by Giving You More Control Over Your Privacy
    Motherboard → Leaked Documents Expose the Secretive Market for Your Web Browsing Data
    The Verge → Google’s ads just look like search results now
    MacMillan → Interference by Sue Burke
    Systemics and design principles in support of Tiago Forte’s PARA framework
    → Microsoft wants to capture all of the carbon dioxide it’s ever emitted
    → US announces AI software export restrictions for China
    → Science Conferences Are Stuck in the Dark Ages
    → This wireless power startup says it can charge your phone using only radio waves
    → Segway’s newest self-balancing vehicle is an egg-shaped wheelchair
    → Twitter announces Bluesky: a team seeking and developing an open standard for social media
    → Elon Musk attempts to explain Twitter to normal people in court
    → TED and YouTube launch global climate initiative
    → Embracing multilingualism to enhance complexity sensitive research
    → The ‘Amazon effect’ is flooding a struggling recycling system with cardboard
    → John Kerry, Arnold Schwarzenegger wage ‘World War Zero’ on climate change
    → Combining semantic and term frequency similarities for text clustering
    → Bad RCS implementations are creating big vulnerabilities, security researchers claim
    → 2019 Tech Trends Report — The Future Today Institute
    → Medical Crowdsourcing: Harnessing the “Wisdom of the Crowd” to Solve Medical Mysteries
    → Report Launch - OPSI Primer on AI for the Public Sector
    → “Level Up”: Leveraging Skill and Engagement to Maximize Player Gameplay