TYE: We touched on data provenance earlier, but I want to come back to it from the perspective of quantitative data

TYE: We touched on data provenance earlier, but I want to come back to it from the perspective of quantitative data. In particular, I think it is critical to keep in mind that the systems that generate quantitative data are necessarily embedded in socio-technical systems. The technological elements of those systems (electronic sensors, software-based telemetry, etc.) are designed, manufactured, and maintained by sociocultural factors. So, a data scientist who is diligently trying to understand where their data comes from in order to interpret it, will sooner or later need to understand sociocultural phenomena that produced data, even if that understanding is more meta-data than data. It would make sense to co-develop rubrics for assessing the quality of data generated by socio-technical systems. Shining a bright light on the deepest lineage of data that impacts business or design decisions is important for everyone involved. Such assessments could lead to more cautious ways of using data, or be used in efforts to improve the explainability of technical systems. — https://www.epicpeople.org/data-science-and-ethnography/
    Next → → there’s a lot of potential in collaborating to illuminate the systems that create data https://www.epicpeople.org/data-science-and-ethnography/ ← Previous → DAWN: I’m always curious about how data scientists measure the consistency or sensitivity of results from datasets https://www.epicpeople.org/data-science-and-ethnography/
    Latest posts
    Design management for wicked problems - ADMC 2020
    → Intuition is confident abductive-inferential thinking
    The Verge → Researchers detail huge hack-for-hire campaigns against environmentalists
    Conversations, cybernetics, and Theory of Mind
    → Why are we exceeding the Earth’s carrying capacity?
    IDEO U's Creative Confidence Podcast → Roger Martin, Bianca Andreescu, and systemic strategy
    Reuters → Systemic lessons from South Korea’s Patient 31
    Axle → Divide & conquer
    FSG → Can Snow Clearing Be Sexist?
    The Verge → As Lambda students speak out, the school’s debt-swapping partnership disappears from the internet
    The Talk Show → “Bring It On, Haters”, With Special Guest Ben Thompson
    Facebook → Starting the Decade by Giving You More Control Over Your Privacy
    Motherboard → Leaked Documents Expose the Secretive Market for Your Web Browsing Data
    The Verge → Google’s ads just look like search results now
    MacMillan → Interference by Sue Burke
    Systemics and design principles in support of Tiago Forte’s PARA framework
    → Microsoft wants to capture all of the carbon dioxide it’s ever emitted
    → US announces AI software export restrictions for China
    → Science Conferences Are Stuck in the Dark Ages
    → This wireless power startup says it can charge your phone using only radio waves
    → Segway’s newest self-balancing vehicle is an egg-shaped wheelchair
    → Twitter announces Bluesky: a team seeking and developing an open standard for social media
    → Elon Musk attempts to explain Twitter to normal people in court
    → TED and YouTube launch global climate initiative
    → Embracing multilingualism to enhance complexity sensitive research
    → The ‘Amazon effect’ is flooding a struggling recycling system with cardboard
    → John Kerry, Arnold Schwarzenegger wage ‘World War Zero’ on climate change
    → Combining semantic and term frequency similarities for text clustering
    → Bad RCS implementations are creating big vulnerabilities, security researchers claim
    → 2019 Tech Trends Report — The Future Today Institute
    → Medical Crowdsourcing: Harnessing the “Wisdom of the Crowd” to Solve Medical Mysteries